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L’expression générale donnant l’énergie de déformation dans une poutre en fonction
des forces et des moments extérieurs qui s’applique au système, peut être exprimée
comme une superposition des énergies de déformation des cas particuliers.

Énergie de déformation élastique d’une poutre soumise à un effort normal

• 𝑈𝑈 = ∫0
∆𝑑𝑑𝑈𝑈

• 𝑑𝑑𝑈𝑈 = 𝑁𝑁2

2𝐸𝐸𝐸𝐸
𝑑𝑑𝑑𝑑

• 𝑈𝑈𝑁𝑁 = ∫0
 𝑁𝑁2

2𝐸𝐸𝐸𝐸
𝑑𝑑𝑑𝑑

Expression de l’énergie de déformation

𝑑𝑑𝑈𝑈 = 𝑁𝑁𝑑𝑑 ∆ 𝑁𝑁 =
∆𝐸𝐸 𝐹𝐹


= ∫0
∆𝑁𝑁𝑑𝑑 ∆ = 𝐸𝐸 𝐹𝐹



∫0
∆∆𝑑𝑑 ∆ = 𝐸𝐸 𝐹𝐹 ∆

2

2
= ∆


𝐸𝐸𝐸𝐸 ∆
2

= 𝑁𝑁 ∆
2

= 𝑁𝑁2
2𝐸𝐸𝐸𝐸
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L’énergie de déformation en cisaillement simple équivaut au demi-produit de l’effort
tranchant T par le glissement dy de la section F

• d𝑈𝑈 = 1
2
𝑇𝑇 d𝑦𝑦

Énergie de déformation élastique d’une poutre
soumise à un effort de torsion

• 𝑑𝑑𝑈𝑈 = 1
2
𝑀𝑀𝑡𝑡 𝑑𝑑𝜑𝜑

• 𝑈𝑈 = 1
2
𝑀𝑀𝑡𝑡 ∫0

𝑑𝑑𝜑𝜑 = 1
2
𝑀𝑀𝑡𝑡𝜑𝜑 = 𝑀𝑀𝑡𝑡

2


2𝐺𝐺 𝐼𝐼𝑝𝑝

• 𝑈𝑈𝑀𝑀𝑡𝑡 = ∫0
 𝑀𝑀𝑡𝑡

2

2𝐺𝐺𝐼𝐼𝑝𝑝
𝑑𝑑𝑑𝑑

Expression de l’énergie de déformation

𝛾𝛾 =
𝜏𝜏
𝐺𝐺

𝑑𝑑𝜑𝜑 =
𝑀𝑀𝑡𝑡 dx
𝐺𝐺 𝐼𝐼𝑝𝑝

𝑑𝑑𝑑𝑑 = 𝛾𝛾d𝑥𝑥

=
1
2
𝜏𝜏 𝐹𝐹 � 𝛾𝛾d𝑥𝑥 =

1
2
𝜏𝜏 𝛾𝛾 d𝑉𝑉=

1
2
𝜏𝜏2

𝐺𝐺
d𝑉𝑉

=
𝑀𝑀𝑡𝑡
2

2𝐺𝐺 𝐼𝐼𝑝𝑝
𝑑𝑑𝑥𝑥
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Énergie de déformation élastique d’une poutre soumise à un moment de flexion pure

• 𝑑𝑑𝑈𝑈 = 1
2
𝑀𝑀𝑓𝑓 𝑑𝑑𝜃𝜃

• 𝑈𝑈𝑀𝑀𝑓𝑓 = ∫0


𝑀𝑀𝑓𝑓
2

2𝐸𝐸𝐸𝐸
𝑑𝑑𝑑𝑑

Expression de l’énergie de déformation

dx = ρ dθ
1/ρ = M/EI 

=
1
2
𝑀𝑀𝑓𝑓

𝑑𝑑𝑑𝑑
𝜌𝜌

=
𝑀𝑀𝑓𝑓
2

2𝐸𝐸𝐸𝐸
𝑑𝑑𝑥𝑥
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Du fait que la contrainte tangentielle τ et l’angle de glissement γ varient dans la
section, les fibres subissent ainsi des déplacements transversaux différents et la
section ne peut rester plane. Approximation : Le déplacement transversal relatif des
deux sections d’un élément de poutre de longueur dx, provoqué par l’effort tranchant
T, peut être caractérisé par un angle de glissement global 𝛾̅𝛾 (voir chapitre 6)

• 𝑑𝑑𝑦𝑦𝑇𝑇 = 𝛾̅𝛾𝑑𝑑𝑑𝑑

Énergie de déformation élastique d’une poutre soumise à un effort tranchant

• 𝑑𝑑𝑑𝑑 = 1
2
𝑇𝑇 𝑑𝑑𝑦𝑦𝑇𝑇

• 𝑈𝑈𝑇𝑇 = ∫0
 𝜂𝜂 𝑇𝑇2

2𝐺𝐺𝐺𝐺
𝑑𝑑𝑑𝑑

Expression de l’énergie de déformation

𝛾̅𝛾 = 𝜂𝜂
𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚

𝐺𝐺
= 𝜂𝜂

𝑇𝑇
𝐺𝐺 𝐹𝐹

𝜂𝜂 =
𝐹𝐹
𝐼𝐼2
�
𝐹𝐹

𝑆𝑆𝑆2

𝑏𝑏2
𝑑𝑑𝑑𝑑

=
1
2
𝑇𝑇𝛾̅𝛾 𝑑𝑑𝑥𝑥 = 1

2
𝑇𝑇 𝜂𝜂 𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚

𝐺𝐺
𝑑𝑑𝑥𝑥 = 𝜂𝜂 𝑇𝑇2

2𝐺𝐺 𝐹𝐹
𝑑𝑑𝑥𝑥
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Soit une poutre de longueur  soumise à un cas de charge quelconque. Dans une
section x, les efforts intérieurs sont l’effort normal N(x), le moment de torsion Mt(x), le
moment de flexion Mf(x) et l’effort tranchant T(x). La section de la poutre n’est pas
nécessairement constante, mais peut varier modérément en fonction de x.

Application du théorème de Castigliano



Chapitre 10 : Énergie de déformation élastique 𝜹𝜹𝒌𝒌 =
𝝏𝝏𝑼𝑼
𝝏𝝏𝑷𝑷𝒌𝒌

9

L’énergie de déformation relative à chaque effort intérieur peut être calculée par
intégration des relations différentielles établies dans les chapitres précédents.

Les formes intégrales des énergies élémentaires de déformation relatives à l’effort
normal N, le moment de torsion Mt, le moment de flexion Mf et l’effort tranchant T ont
pour expression

• 𝑈𝑈𝑁𝑁 = ∫0
 𝑁𝑁2

2𝐸𝐸𝐸𝐸
𝑑𝑑𝑑𝑑

• 𝑈𝑈𝑀𝑀𝑡𝑡 = ∫0
 𝑀𝑀𝑡𝑡

2

2𝐺𝐺𝐼𝐼𝑝𝑝
𝑑𝑑𝑑𝑑

• 𝑈𝑈𝑀𝑀𝑓𝑓 = ∫0


𝑀𝑀𝑓𝑓
2

2𝐸𝐸𝐸𝐸
𝑑𝑑𝑑𝑑

• 𝑈𝑈𝑇𝑇 = ∫0
 𝜂𝜂 𝑇𝑇2

2𝐺𝐺𝐹𝐹
𝑑𝑑𝑑𝑑

L’énergie de déformation totale dans la poutre est la somme des intégrales
précédentes

• 𝑈𝑈 = ∫0
 𝑁𝑁2

2𝐸𝐸𝐸𝐸
𝑑𝑑𝑑𝑑 + ∫0

 𝑀𝑀𝑡𝑡
2

2𝐺𝐺𝐼𝐼𝑝𝑝
𝑑𝑑𝑑𝑑 + ∫0



𝑀𝑀𝑓𝑓
2

2𝐸𝐸𝐸𝐸
𝑑𝑑𝑑𝑑 + ∫0

 𝜂𝜂 𝑇𝑇2

2𝐺𝐺𝐺𝐺
𝑑𝑑𝑑𝑑

Application du théorème de Castigliano
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Pour obtenir le déplacement δk du point Ak où s’applique une force Pk, on peut,
calculer la dérivée partielle de l’énergie de déformation U par rapport à cette force.
Cependant, il est presque toujours préférable de permuter la dérivation et les
intégrations, de sorte que le déplacement δk s’écrit

• 𝛿𝛿𝑘𝑘 = 𝜕𝜕𝑈𝑈
𝜕𝜕𝑃𝑃𝑘𝑘

= ∫0
 𝑁𝑁
𝐸𝐸𝐸𝐸

𝜕𝜕𝑁𝑁
𝜕𝜕𝑃𝑃𝑘𝑘

𝑑𝑑𝑑𝑑 + ∫0
𝑀𝑀𝑡𝑡
𝐺𝐺𝐼𝐼𝑝𝑝

𝜕𝜕𝑀𝑀𝑡𝑡
𝜕𝜕𝑃𝑃𝑘𝑘

𝑑𝑑𝑑𝑑 + ∫0


𝑀𝑀𝑓𝑓

𝐸𝐸𝐸𝐸
𝜕𝜕𝑀𝑀𝑓𝑓

𝜕𝜕𝑃𝑃𝑘𝑘
𝑑𝑑𝑑𝑑 + ∫0

 𝜂𝜂 𝑇𝑇
𝐺𝐺𝐺𝐺

𝜕𝜕𝑇𝑇
𝜕𝜕𝑃𝑃𝑘𝑘

𝑑𝑑𝑑𝑑

On applique au point dont on désire connaître le déplacement vertical δAV dans une
direction donnée, une force Q arbitraire dans cette direction. Après avoir calculé les
efforts intérieurs et les dérivées partielles, il suffit d’annuler la force fictive Q pour
connaitre le déplacement en ce point.

• 𝛿𝛿𝐴𝐴𝐴𝐴 = 𝜕𝜕𝑈𝑈
𝜕𝜕𝜕𝜕

Avec Q = 0

Application du théorème de Castigliano
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Problème 10.0

Déterminer la flèche maximale de la poutre en utilisant le théorème de Castigliano.
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Problème 10.0
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Comme dans tous les cas particuliers examinés jusqu’ici, nous supposerons que les
déformations sont élastiques – donc réversibles – et proportionnelles aux forces ou
aux moments qui les provoquent.

Considérons un système statique ou hyperstatique, astreint à un nombre quelconque
de liaisons et soumis à n1 forces Fi et n2 moments Mj, tous indépendants.

Quand toutes les forces et tous les moments sont nuls, on dit que le système se
trouve dans son état initial ou naturel.

Forme quadratique de l’énergie de déformation
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Soient Di le déplacement de la force Fi et Φj la rotation du moment Mj entre l’état
initial du système et l’état final considéré. Désignons par di et ϕj leurs projections
respectives sur les supports de Fi et Mj

Afin de simplifier l’écriture et de travailler avec des grandeurs scalaires, nous adop-
tons pour la suite la convention suivante :

• Pi désigne une force généralisée, amplitude de la force Fi ou du moment Mi

• δi dénote un déplacement généralisé (déplacement di ou rotation ϕi) dans la
direction de Pi.

Forme quadratique de l’énergie de déformation

Φj
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Introduisons le travail d’une force généralisée (= force ou moment) élastique.

Un état intermédiaire peut être défini en fonction d’un coefficient de proportionnalité
α variant de 0 à 1 et qui détermine les forces α Pi et les déplacements α δi

Lors d’un accroissement dα du coefficient de proportionnalité, chaque force Pi fournit
un travail élémentaire.

• 𝑑𝑑𝑈𝑈𝑖𝑖 = 𝛼𝛼𝑃𝑃𝑖𝑖 � 𝛿𝛿𝑖𝑖𝑑𝑑𝑑𝑑

Forme quadratique de l’énergie de déformation
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L’augmentation d’énergie élastique du système a pour valeur, avec n = nF + nM

• 𝑑𝑑𝑑𝑑 = ∑𝑖𝑖=1𝑛𝑛 𝑑𝑑𝑈𝑈𝑖𝑖 = ∑𝑖𝑖=1𝑛𝑛 𝑃𝑃𝑖𝑖𝛿𝛿𝑖𝑖 � 𝛼𝛼𝑑𝑑𝛼𝛼

Il suffit d’intégrer cette expression pour obtenir l’énergie accumulée par le système
dans son état final (formule de Clapeyron):

• 𝑈𝑈 = ∑𝑖𝑖=1𝑛𝑛 𝑃𝑃𝑖𝑖𝛿𝛿𝑖𝑖 ∫0
1 𝛼𝛼𝑑𝑑𝛼𝛼 = 1

2
∑𝑖𝑖=1𝑛𝑛 𝑃𝑃𝑖𝑖𝛿𝛿𝑖𝑖

Forme quadratique de l’énergie de déformation
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La proportionnalité entre forces et déplacements permet d’appliquer le principe de
superposition au système. Les déplacements δi sont donc des fonctions linéaires
des forces généralisées

• 𝛿𝛿𝑖𝑖 = 𝑎𝑎𝑖𝑖1𝑃𝑃1 + 𝑎𝑎𝑖𝑖2𝑃𝑃2 + … + 𝑎𝑎𝑖𝑖𝑖𝑖 𝑃𝑃𝑖𝑖 + ⋯+ 𝑎𝑎𝑖𝑖𝑗𝑗𝑃𝑃𝑗𝑗 + ⋯+𝑎𝑎𝑖𝑖𝑖𝑖 𝑃𝑃𝑛𝑛 = ∑𝑗𝑗=1𝑛𝑛 𝑎𝑎𝑖𝑖𝑖𝑖𝑃𝑃𝑗𝑗

= 𝛿𝛿𝑖𝑖1 + 𝛿𝛿𝑖𝑖2 + ⋯+ 𝛿𝛿𝑖𝑖𝑖𝑖 + ⋯+ 𝛿𝛿𝑖𝑖𝑗𝑗 + ⋯+ 𝛿𝛿𝑖𝑖𝑛𝑛 = ∑𝑗𝑗=1𝑛𝑛 𝛿𝛿𝑖𝑖𝑖𝑖

Forme quadratique de l’énergie de déformation

Le coefficient de proportionnalité aij, appelé
coefficient d’influence, est égal à la projection,
sur la force généralisée Pi agissant au point Ai,
du déplacement provoqué en ce point par une
force unité appliquée au point Aj dans la
direction de Pj

Le scalaire δij = aij Pj est la contribution de la
force Pj au déplacement du point d’application
de la force Pi dans la direction de cette dernière
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Interprétation du coefficient d’influence aij

• AiA’i = déplacement de Pi dû à Pj

• AiA’’i = δij

Forme quadratique de l’énergie de déformation

Aj

Pj

Ai

Pi

A’iA’’i

δij
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L’expression peut ensuite être portée dans la formule de Clapeyron pour aboutir à la
forme finale de la seconde formule de Clapeyron

• 𝑈𝑈 = 1
2
∑𝑖𝑖=1𝑛𝑛 𝑃𝑃𝑖𝑖𝛿𝛿𝑖𝑖 = 1

2
∑𝑖𝑖=1𝑛𝑛 ∑𝑗𝑗=1𝑛𝑛 𝑎𝑎𝑖𝑖𝑖𝑖𝑃𝑃𝑖𝑖𝑃𝑃𝑗𝑗

On voit que l’énergie de déformation élastique est une fonction quadratique des
forces et moments agissant sur le système

Forme quadratique de l’énergie de déformation

Aj

Pj

Ai

Pi

A’iA’’i

δij
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Dans un système élastique et proportionnel, le travail d’un système de forces Pi , lors
de la déformation imposée par un second système de forces Qj , est égal au travail du
système de forces Qj lors de la déformation imposée par le premier système de forces
Pi.

• ∑𝑖𝑖=1𝑛𝑛 𝛿𝛿𝑖𝑖′𝑃𝑃𝑖𝑖 = ∑𝑗𝑗=1𝑚𝑚 𝜆𝜆𝑗𝑗′𝑄𝑄𝑗𝑗

Théorème de réciprocité de Betti-Rayleigh

Système soumis successivement 
à une force Pi puis Pj

Système soumis successivement 
à une force Pj puis Pi
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Considérons un corps élastique soumis à deux systèmes de forces généralisées Pi
et Qj , agissant respectivement aux points Ai et Bj

Énergie de déformation (Clapeyron) induite par l’application de la force Pi au point Ai

• 𝑈𝑈 𝑃𝑃𝑖𝑖 = 1
2
∑𝑖𝑖=1𝑛𝑛 𝛿𝛿𝑖𝑖 𝑃𝑃𝑖𝑖

Démonstration : Théorème de réciprocité de Betti-Rayleigh

Pi

Qj

Bj

Ai
δi

δ’i

λj

Énergie de déformation induite par l’application 
de la force Qj au point Bj

• 𝑈𝑈 𝑄𝑄𝑗𝑗 = 1
2
∑𝑖𝑖=1𝑚𝑚 𝜆𝜆𝑗𝑗 𝑄𝑄𝑗𝑗

Énergie de déformation induite par l’application 
de la force Qj au point Ai

• 𝑈𝑈′ 𝑃𝑃𝑖𝑖 = 1
2
∑𝑖𝑖=1𝑛𝑛 𝛿𝛿𝑖𝑖′𝑃𝑃𝑖𝑖
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Procédons maintenant de manière inverse, en appliquant d’abord les forces Qj
seules

Énergie de déformation (Clapeyron) induite par l’application de la force Qj au point Bj

• 𝑈𝑈 𝑄𝑄𝑗𝑗 = 1
2
∑𝑖𝑖=1𝑚𝑚 𝜆𝜆𝑗𝑗 𝑄𝑄𝑗𝑗

Démonstration : Théorème de réciprocité de Betti-Rayleigh

Pi

Qj

Bj

Ai
δi

λj

Énergie de déformation induite par l’application 
de la force Pi au point Ai

• 𝑈𝑈 𝑃𝑃𝑖𝑖 = 1
2
∑𝑖𝑖=1𝑛𝑛 𝛿𝛿𝑖𝑖 𝑃𝑃𝑖𝑖

Énergie de déformation induite par l’application 
de la force Qj au point Ai

• 𝑈𝑈′ 𝑄𝑄𝑗𝑗 = 1
2
∑𝑗𝑗=1𝑚𝑚 𝜆𝜆𝑗𝑗′𝑄𝑄𝑗𝑗

λ'j
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Dans l’état d’équilibre final, l’énergie de déformation totale est donnée par la somme
des égalités.

• 𝑈𝑈 𝑃𝑃𝑖𝑖 ,𝑄𝑄𝑗𝑗 = 𝑈𝑈 𝑃𝑃𝑖𝑖 +𝑈𝑈 𝑄𝑄𝑗𝑗 +𝑈𝑈′ 𝑃𝑃𝑖𝑖 = 1
2
∑𝑖𝑖=1𝑛𝑛 𝛿𝛿𝑖𝑖 𝑃𝑃𝑖𝑖+

1
2
∑𝑖𝑖=1𝑚𝑚 𝜆𝜆𝑗𝑗 𝑄𝑄𝑗𝑗 + 1

2
∑𝑗𝑗=1𝑚𝑚 𝜆𝜆𝑗𝑗′𝑄𝑄𝑗𝑗

• 𝑈𝑈 𝑄𝑄𝑗𝑗 ,𝑃𝑃𝑖𝑖 = 𝑈𝑈 𝑄𝑄𝑗𝑗 +𝑈𝑈 𝑃𝑃𝑖𝑖 +𝑈𝑈′ 𝑄𝑄𝑗𝑗 = 1
2
∑𝑖𝑖=1𝑚𝑚 𝜆𝜆𝑗𝑗 𝑄𝑄𝑗𝑗 + 1

2
∑𝑖𝑖=1𝑛𝑛 𝛿𝛿𝑖𝑖 𝑃𝑃𝑖𝑖 + 1

2
∑𝑖𝑖=1𝑛𝑛 𝛿𝛿𝑖𝑖′𝑃𝑃𝑖𝑖

Les énergie déformation exprimées sont forcément égale puisqu’elles ne dépendent
que de l’état final du système. D’où finalement, on retrouve l’expression exprimée du
théorème de réciprocité énoncé précédemment

• ∑𝑖𝑖=1𝑛𝑛 𝛿𝛿𝑖𝑖′𝑃𝑃𝑖𝑖 = ∑𝑗𝑗=1𝑚𝑚 𝜆𝜆𝑗𝑗′𝑄𝑄𝑗𝑗

Démonstration : Théorème de réciprocité de Betti-Rayleigh
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Le théorème de réciprocité de Betti-Rayleigh exprime l’égalité de deux énergies et
peut s’énoncer sous la forme plus restreinte de l’égalité des coefficients d’influence

• 𝑎𝑎𝑖𝑖𝑖𝑖 = 𝑎𝑎𝑗𝑗𝑗𝑗

Théorème de l’égalité des coefficients d’influence réciproques : Dans un système
élastique et proportionnel, les coefficients d’influence réciproques aij et aji relatifs aux
déplacements des points d’application de deux forces extérieures Pi et Pj sont égaux

Pour démontrer cette égalité, considérons un système déformé possédant une
énergie de déformation U0. Une nouvelle force Pi appliquée au point Ai provoque
selon sa direction un déplacement δii de ce point et fournit l’énergie de déformation
Uii au système

• 𝛿𝛿𝑖𝑖𝑖𝑖 = 𝑎𝑎𝑖𝑖𝑖𝑖𝑃𝑃𝑖𝑖

• 𝑈𝑈𝑖𝑖𝑖𝑖 = 1
2
𝛿𝛿𝑖𝑖𝑖𝑖𝑃𝑃𝑖𝑖 = 1

2
𝑎𝑎𝑖𝑖𝑖𝑖𝑃𝑃𝑖𝑖2

Égalité des coefficients d’influence réciproques
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A partir de ce nouvel état du système, appliquons au point Aj une force Pj qui
entraîne un déplacement δjj de ce point et un travail Ujj

• 𝛿𝛿𝑗𝑗𝑗𝑗 = 𝑎𝑎𝑗𝑗𝑗𝑗𝑃𝑃𝑗𝑗

• 𝑈𝑈𝑗𝑗𝑗𝑗 = 1
2
𝛿𝛿𝑗𝑗𝑗𝑗𝑃𝑃𝑗𝑗 = 1

2
𝑎𝑎𝑗𝑗𝑗𝑗𝑃𝑃𝑗𝑗2

Cette force provoque en outre un nouveau déplacement δij au point Ai

• 𝛿𝛿𝑖𝑖𝑗𝑗 = 𝑎𝑎𝑖𝑖𝑗𝑗𝑃𝑃𝑗𝑗

• 𝑈𝑈𝑖𝑖𝑗𝑗 = 𝛿𝛿𝑖𝑖𝑗𝑗𝑃𝑃𝑗𝑗 = 𝑎𝑎𝑖𝑖𝑗𝑗𝑃𝑃𝑗𝑗𝑃𝑃𝑖𝑖

L’énergie du système s’exprime (∆U le travail des autres forces n ≠ i, j )

• 𝑈𝑈 = 𝑈𝑈0 + ∆𝑈𝑈 + 1
2
𝑎𝑎𝑖𝑖𝑖𝑖𝑃𝑃𝑖𝑖2 + 1

2
𝑎𝑎𝑗𝑗𝑗𝑗𝑃𝑃𝑗𝑗2 + 𝑎𝑎𝑖𝑖𝑖𝑖𝑃𝑃𝑗𝑗𝑃𝑃𝑖𝑖

Démonstration : Égalité des coefficients d’influence réciproques
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Si l’on refait le même développement en appliquant Pj puis Pi, on trouve :

• 𝑈𝑈 = 𝑈𝑈0 + ∆𝑈𝑈 + 1
2
𝑎𝑎𝑗𝑗𝑗𝑗𝑃𝑃𝑗𝑗2 + 1

2
𝑎𝑎𝑖𝑖𝑖𝑖𝑃𝑃𝑖𝑖2 + 𝑎𝑎𝑗𝑗𝑗𝑗𝑃𝑃𝑖𝑖𝑃𝑃𝑗𝑗

∆U ayant la même signification et la même valeur que précédemment, on a

• 𝑎𝑎𝑖𝑖𝑖𝑖𝑃𝑃𝑗𝑗𝑃𝑃𝑖𝑖 = 𝑎𝑎𝑗𝑗𝑗𝑗𝑃𝑃𝑖𝑖𝑃𝑃𝑗𝑗

Et donc, on trouve l’expression du théorème de réciprocité de Betti-Rayleigh introduit
au début de ce chapitre

• 𝑎𝑎𝑖𝑖𝑖𝑖 = 𝑎𝑎𝑗𝑗𝑗𝑗

Démonstration : Égalité des coefficients d’influence réciproques
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Enoncé : Le déplacement δk d’une force généralisée Pk, agissant sur un système
élastique et proportionnel, est égal à la dérivée partielle de l’énergie de déformation
du système par rapport à cette force

• 𝛿𝛿𝑘𝑘 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝑃𝑃𝑘𝑘

Le déplacement généralisé δk est la composante dans la direction de la force
généralisée Pk (force ou moment) du déplacement ou de la rotation provoqué par
l’ensemble des forces généralisées appliquées au système.

L’énergie de déformation s’exprime (par la seconde formule de Clapeyron) :

• 𝑈𝑈 = 1
2
∑𝑖𝑖=1𝑛𝑛 ∑𝑗𝑗=1𝑛𝑛 𝛼𝛼𝑖𝑖𝑖𝑖𝑃𝑃𝑖𝑖𝑃𝑃𝑗𝑗

Énoncé : Théorème de Castigliano



Chapitre 10 : Énergie de déformation élastique 𝜹𝜹𝒌𝒌 =
𝝏𝝏𝑼𝑼
𝝏𝝏𝑷𝑷𝒌𝒌

32

Isolons dans cette double somme les 2n–1 termes dépendant de la force Pk

• 𝑈𝑈 = 1
2
∑𝑖𝑖=1
𝑖𝑖≠𝑘𝑘

𝑛𝑛 𝛼𝛼𝑖𝑖𝑘𝑘𝑃𝑃𝑖𝑖𝑃𝑃𝑘𝑘 + 1
2
∑𝑗𝑗=1
𝑗𝑗≠𝑘𝑘

𝑛𝑛 𝛼𝛼𝑘𝑘𝑘𝑘𝑃𝑃𝑘𝑘𝑃𝑃𝑗𝑗 + 1
2
𝛼𝛼𝑘𝑘𝑘𝑘𝑃𝑃𝑘𝑘2 + 𝑈𝑈′

U' dénote la part de l’énergie de déformation qui est indépendante de Pk. En dérivant
cette expression par rapport à la force généralisée Pk

• 𝜕𝜕𝜕𝜕
𝜕𝜕𝑃𝑃𝑘𝑘

= 1
2
∑𝑖𝑖=1
𝑖𝑖≠𝑘𝑘

𝑛𝑛 𝛼𝛼𝑖𝑖𝑖𝑖𝑃𝑃𝑖𝑖 + 1
2
∑𝑗𝑗=1
𝑗𝑗≠𝑘𝑘

𝑛𝑛 𝛼𝛼𝑘𝑘𝑘𝑘𝑃𝑃𝑗𝑗 + 𝛼𝛼𝑘𝑘𝑘𝑘𝑃𝑃𝑘𝑘

En réintégrant le troisième terme du membre droit de cette égalité dans les deux
sommes, on peut écrire, grâce à l’égalité des coefficients d’influence réciproques (aij
= aji) et le lien entre le déplacement et les forces généralisées

• 𝜕𝜕𝜕𝜕
𝜕𝜕𝑃𝑃𝑘𝑘

= 1
2
∑𝑖𝑖=1𝑛𝑛 𝛼𝛼𝑖𝑖𝑖𝑖𝑃𝑃𝑖𝑖 + 1

2
∑𝑗𝑗=1𝑛𝑛 𝛼𝛼𝑘𝑘𝑘𝑘𝑃𝑃𝑗𝑗 = 1

2
∑𝑖𝑖=1𝑛𝑛 𝛼𝛼𝑘𝑘𝑘𝑘𝑃𝑃𝑖𝑖 + 1

2
∑𝑗𝑗=1𝑛𝑛 𝛼𝛼𝑘𝑘𝑘𝑘𝑃𝑃𝑗𝑗 = 1

2
𝛿𝛿𝑘𝑘 + 1

2
𝛿𝛿𝑘𝑘 = 𝛿𝛿𝑘𝑘

Démonstration : Théorème de Castigliano

aij = aj
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En négligeant l’influence de l’effort tranchant, déterminer par le théorème de
Castigliano le déplacement vertical δ du point A d’une poutre encastrée (3d, coude
perpendiculaire) en forme de L de section circulaire, soumise à une force P en son
extrémité libre

Problème 10.1
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Problème 10.2

En ne tenant compte que de la flexion et en recourant au théorème de Castigliano,
calculer pour la poutre encastrée représentée le déplacement vertical δV, le
déplacement horizontal δH ainsi que la rotation α au point A où s’applique une force
verticale P
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En négligeant l’influence de l’effort tranchant, déterminer par le théorème de
Castigliano le déplacement vertical δ du point A d’une poutre encastrée (3d, coude
perpendiculaire) en forme de L de section circulaire, soumise à une force P en son
extrémité libre

Problème 10.1
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Problème 10.1
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Problème 10.1
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Problème 10.2

En ne tenant compte que de la flexion et en recourant au théorème de Castigliano,
calculer pour la poutre encastrée représentée le déplacement vertical δV, le
déplacement horizontal δH ainsi que la rotation α au point A où s’applique une force
verticale P
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Problème 10.2
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Problème 10.2
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Problème 10.2
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Problème 10.2
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Calculer la contrainte de cisaillement maximum dans un ressort hélicoïdal de dia-
mètre D, formé de n spires de diamètre d et soumis à une charge de compression P.
Déterminer ensuite la flèche, la constante du ressort et l’énergie emmagasinée.

Problème 5.2
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Problème 5.2
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Problème 5.2



Première formule de Clapeyron

• 𝑈𝑈 = ∑𝑖𝑖=1𝑛𝑛 𝑃𝑃𝑖𝑖𝛿𝛿𝑖𝑖 ∫0
1 𝛼𝛼𝑑𝑑𝛼𝛼 = 1

2
∑𝑖𝑖=1𝑛𝑛 𝑃𝑃𝑖𝑖𝛿𝛿𝑖𝑖

Le déplacement généralisé

• 𝛿𝛿𝑖𝑖 = ∑𝑗𝑗=1𝑛𝑛 𝑎𝑎𝑖𝑖𝑖𝑖𝑃𝑃𝑗𝑗 = ∑𝑗𝑗=1𝑛𝑛 𝛿𝛿𝑖𝑖𝑖𝑖

Seconde formule de Clapeyron

• 𝑈𝑈 = 1
2
∑𝑖𝑖=1𝑛𝑛 𝑃𝑃𝑖𝑖𝛿𝛿𝑖𝑖 = 1

2
∑𝑖𝑖=1𝑛𝑛 ∑𝑗𝑗=1𝑛𝑛 𝑎𝑎𝑖𝑖𝑖𝑖𝑃𝑃𝑖𝑖𝑃𝑃𝑗𝑗

Démonstration : Théorème de Castigliano
Étapes justificatives



Théorème de réciprocité de Betti-Rayleigh

• ∑𝑖𝑖=1𝑛𝑛 𝛿𝛿𝑖𝑖′𝑃𝑃𝑖𝑖 = ∑𝑗𝑗=1𝑚𝑚 𝜆𝜆𝑗𝑗′𝑄𝑄𝑗𝑗

Le théorème de réciprocité de Betti-Rayleigh exprime l’égalité de deux énergies et
peut s’énoncer sous la forme plus restreinte de l’égalité des coefficients d’influence

• 𝑎𝑎𝑖𝑖𝑖𝑖 = 𝑎𝑎𝑗𝑗𝑗𝑗

Démonstration : Théorème de Castigliano
Étapes justificatives



Théorème de Castigliano

• 𝑈𝑈 = 1
2
∑𝑖𝑖=1𝑛𝑛 ∑𝑗𝑗=1𝑛𝑛 𝛼𝛼𝑖𝑖𝑖𝑖𝑃𝑃𝑖𝑖𝑃𝑃𝑗𝑗

• 𝑈𝑈 = 1
2
∑𝑖𝑖=1
𝑖𝑖≠𝑘𝑘

𝑛𝑛 𝛼𝛼𝑖𝑖𝑖𝑖𝑃𝑃𝑖𝑖𝑃𝑃𝑘𝑘 + 1
2
∑𝑗𝑗=1
𝑗𝑗≠𝑘𝑘

𝑛𝑛 𝛼𝛼𝑘𝑘𝑘𝑘𝑃𝑃𝑘𝑘𝑃𝑃𝑗𝑗 + 1
2
𝛼𝛼𝑘𝑘𝑘𝑘𝑃𝑃𝑘𝑘2 + 𝑈𝑈′

• 𝜕𝜕𝜕𝜕
𝜕𝜕𝑃𝑃𝑘𝑘

= 1
2
∑𝑖𝑖=1
𝑖𝑖≠𝑘𝑘

𝑛𝑛 𝛼𝛼𝑖𝑖𝑖𝑖𝑃𝑃𝑖𝑖 + 1
2
∑𝑗𝑗=1
𝑗𝑗≠𝑘𝑘

𝑛𝑛 𝛼𝛼𝑘𝑘𝑘𝑘𝑃𝑃𝑗𝑗 + 𝛼𝛼𝑘𝑘𝑘𝑘𝑃𝑃𝑘𝑘

• 𝜕𝜕𝜕𝜕
𝜕𝜕𝑃𝑃𝑘𝑘

= 1
2
∑𝑖𝑖=1𝑛𝑛 𝛼𝛼𝑖𝑖𝑖𝑖𝑃𝑃𝑖𝑖 + 1

2
∑𝑗𝑗=1𝑛𝑛 𝛼𝛼𝑘𝑘𝑘𝑘𝑃𝑃𝑗𝑗 = 1

2
∑𝑖𝑖=1𝑛𝑛 𝛼𝛼𝑘𝑘𝑘𝑘𝑃𝑃𝑖𝑖 + 1

2
∑𝑗𝑗=1𝑛𝑛 𝛼𝛼𝑘𝑘𝑘𝑘𝑃𝑃𝑗𝑗 = 1

2
𝛿𝛿𝑘𝑘 + 1

2
𝛿𝛿𝑘𝑘 = 𝛿𝛿𝑘𝑘

Ainsi on peut écrire  𝛿𝛿𝑘𝑘 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝑃𝑃𝑘𝑘

Démonstration : Théorème de Castigliano
Étapes justificatives
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