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Chapitre 10 : Energie de déformation élastique

Expression de I'énergie de déformation

|'expression generale donnant I'énergie de déformation dans une poutre en fonction
des forces et des moments extérieurs qui s’applique au systeme, peut étre exprimee
comme une superposition des énergies de déformation des cas particuliers.

Energie de déformation élastique d’une poutre soumise & un effort normal
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Chapitre 10 : Energie de déformation élastique

Expression de I'énergie de déformation
L'énergie de deformation en cisaillement simple eéquivaut au demi-produit de I'effort

tranchant 7T par le glissement dy de la section F
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Energie de déformation élastique d’une poutre
soumise a un effort de torsion
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Chapitre 10 : Energie de déformation élastique

Expression de I'énergie de déformation
Energie de déformation élastique d’une poutre soumise & un moment de flexion pure
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Chapitre 10 : Energie de déformation élastique

Expression de I'énergie de déformation

Du fait que la contrainte tangentielle = et I'angle de glissement y varient dans la
section, les fibres subissent ainsi des deplacements transversaux difféerents et la
section ne peut rester plane. Approximation : Le déplacement transversal relatif des
deux sections d’un élément de poutre de longueur dx, provoqué par I'effort tranchant
T, peut étre caractérisé par un angle de glissement global y (voir chapitre 6)

© dyr =ydx

Energie de déformation élastique d’une poutre soumise & un effort tranchant
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Chapitre 10 : Energie de déformation élastique

Application du théoreme de Castigliano

Soit une poutre de longueur ¢ soumise a un cas de charge quelconque. Dans une
section x, les efforts intérieurs sont I'effort normal N(x), le moment de torsion M,(x), le
moment de flexion M/(x) et I'effort tranchant 7(x). La section de la poutre n'est pas
necessairement constante, mais peut varier modérément en fonction de x.

N/

Y




Chapitre 10 : Energie de déformation élastique
Application du théoreme de Castigliano

L’énergie de deformation relative a chaque effort intérieur peut étre calculée par
intégration des relations différentielles établies dans les chapitres précédents.

Les formes integrales des énergies élémentaires de deformation relatives a I'effort
normal N, le moment de torsion M,, le moment de flexion M, et I'effort tranchant 7 ont
pour expression

° UN= _dx

L’énergie de déformation totale dans la poutre est la somme des intégrales
précédentes
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Chapitre 10 : Energie de déformation élastique

Application du théoreme de Castigliano

Pour obtenir le déplacement ¢, du point 4, ou s’applique une force P,, on peut,
calculer la dérivée partielle de I'énergie de déeformation U par rapport a cette force.
Cependant, il est presque toujours préférable de permuter la dérivation et les
integrations, de sorte que le déplacement ¢, s’écrit

c G = U o (NN g M OM

{Mc OM
= — dx _|_f e e
0P, 0 EF 0Py, 0 Glp 0P,

Int 0T
0 EI apkdx-l_f

0 GF 0P

On applique au point dont on désire connaitre le déplacement vertical 6,,,dans une
direction donnée, une force Q arbitraire dans cette direction. Apres avoir calculé les
efforts intérieurs et les dérivees partielles, il suffit d’annuler la force fictive O pour
connaitre le déplacement en ce point.
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Chapitre 10 : Energie de déformation élastique

Probleme 10.0
Déterminer la fleche maximale de la poutre en utilisant le théoreme de Castigliano.
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Chapitre 10 : Energie de déformation élastique
Probleme 10.0
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Chapitre 10 : Energie de déformation élastique
Forme quadratique de I'’énergie de déformation

Comme dans tous les cas particuliers examinés jusqu’ici, Nous supposerons que les
déformations sont élastiques — donc réversibles — et proportionnelles aux forces ou
aux moments qui les provoquent.

Considérons un systeme statique ou hyperstatique, astreint a un nombre quelconque
de liaisons et soumis a n, forces F; et n, moments M, tous indépendants.

Quand toutes les forces et tous les moments sont nuls, on dit que le systeme se
trouve dans son état initial ou naturel.
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Chapitre 10 : Energie de déformation élastique

Forme quadratique de I'’énergie de déformation

Soient D, le déplacement de la force F; et ®; la rotation du moment M; entre |'état
initial du systeme et I'état final considere. Désignons par d; et ¢; leurs projections
respectives sur les supports de F;et M,

Afin de simplifier I'écriture et de travailler avec des grandeurs scalaires, nous adop-
tons pour la suite la convention suivante :

- P, designe une force géneralisee, amplitude de la force F, ou du moment M,

- o, denote un déeplacement géneéralise (déplacement d; ou rotation ¢) dans la
direction de P..
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Chapitre 10 : Energie de déformation élastique
Forme quadratique de I'’énergie de déformation

Introduisons le travail d’une force généralisée (= force ou moment) élastique.

Un état intermédiaire peut étre défini en fonction d’un coefficient de proportionnalité
a variant de 0 a 1 et qui determine les forces a P, et les déplacements «a o,

Lors d'un accroissement da du coefficient de proportionnalité, chaque force P, fournit
un travail élémentaire.
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Chapitre 10 : Energie de déformation élastique
Forme quadratique de I'’énergie de déformation

L’augmentation d’énergie élastique du systeme a pour valeur, avec n = ng + ny,
e dU = Z?=1 dUl = ?=1 Pl-5l- -ada

I suffit d’intégrer cette expression pour obtenir I'énergie accumulée par le systeme
dans son état final (formule de Clapeyron):
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Chapitre 10 : Energie de déformation élastique

Forme quadratique de I'’énergie de déformation

La proportionnalité entre forces et déplacements permet d’appliquer le principe de
superposition au systeme. Les déplacements ¢ sont donc des fonctions lineaires
des forces generalisées

° 5i = ailPl + aisz + ...+ aii Pi + -+ Cliij + .- +ain Pn = ;'l=1 aijP-

== 61’1 + 61’2 + -+ 5” + -+ 51_, + -+ 6in — ?=1 611

Le coefficient de proportionnalite a; appelée
coefficient d’influence, est égal a la projection,
sur la force généralisée P; agissant au point 4,
du déplacement provoqué en ce point par une
force unité appliquee au point 4; dans la
direction de P,

Le scalaire 6, = a; P, est la contribution de la
force P, au deplacement du point d'application
de la force P, dans la direction de cette derniere
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Chapitre 10 : Energie de déformation élastique
Forme quadratique de I'’énergie de déformation

Interprétation du coefficient d’influence a;
AA’; = deplacement de P, du a P,
4,47 = é;'j
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Chapitre 10 : Energie de déformation élastique

Forme quadratique de I'’énergie de déformation

L'expression peut ensuite étre portée dans la formule de Clapeyron pour aboutir a la
forme finale de la seconde formule de Clapeyron

_1lymn _1
* U_E i=1Pi5i_2 121 1al]

On voit que I'énergie de déformation élastique est une fonction quadratique des
forces et moments agissant sur le systeme
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Chapitre 10 : Energie de déformation élastique

Théoreme de reciprocité de Betti-Rayleigh

Dans un systeme elastique et proportionnel, le travail d’un systeme de forces P;, lors
de la déformation imposee par un second systeme de forces Q., est egal au travail du
systeme de forces Q; lors de la déformation imposée par le premier systeme de forces
P.

1

© D=1 6P :Z}'n=1 _;Qj

Systeme soumis successivement Systeme soumis successivement
a une force P; puis P, a une force P; puis P, s



Chapitre 10 : Energie de déformation élastique

Démonstration : Théoreme de réciprocité de Betti-Rayleigh

Considérons un corps elastique soumis a deux systemes de forces géneralisées P,
et 0;, agissant respectivement aux points 4, et B,

Energie de déformation (Clapeyron) induite par I'application de la force P; au point 4,

- UP) =%21i1=15i P;

Energie de déformation induite par I'application
de la force Q; au point B,

- U(Q) =734 4 @

Energie de déformation induite par I'application
de la force Q; au point 4,

/ 1 !/
» U'(P) =52z, 6;P;
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Chapitre 10 : Energie de déformation élastique

Démonstration : Théoreme de réciprocité de Betti-Rayleigh

Proceédons maintenant de maniere inverse, en appliquant d'abord les forces Q,
seules

Energie de deformation (Clapeyron) induite par I'application de la force Q; au point B,

- U(Q) =53R4 Q)

Energie de déformation induite par I'application
de la force P, au point 4,

- UP) =%Z?=15i P;

Energie de déformation induite par I'application
de la force Q; au point 4,

- U(Q)) =5 ZT 40
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Chapitre 10 : Energie de déformation élastique

Démonstration : Théoreme de réciprocité de Betti-Rayleigh

Dans I'état d’équilibre final, I'énergie de déformation totale est donnée par la somme
des égalités.

 U(P, Q) =U®) +U(Q)) +U'(P) =330, 8; Pt XMy 4 Q +5 XM 40,

’ U(Qj'Pi) - U(Qj) +U(P) "'U,(Qj) =% ?Lllj Qj +%Z?=16i P; +527i1=15ilpi

Les énergie déformation exprimées sont forcément égale puisqu’elles ne dépendent
que de I'état final du systeme. D’ou finalement, on retrouve I'expression exprimée du
théoreme de réciprocité énoncé précédemment

n ! _ m !
: i=10; Py = 2j=14;Q;
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Chapitre 10 : Energie de déformation élastique
Egalité des coefficients d’influence réciproques

Le théoreme de réciprocité de Betti-Rayleigh exprime I'égalité de deux energies et
peut s’enoncer sous la forme plus restreinte de I'égalité des coefficients d’influence

a;j = Qji

Théoreme de I'égalité des coefficients d’influence réciproques : Dans un systeme
élastique et proportionnel, les coefficients d'influence réciproques a; et a;; relatifs aux
deplacements des points d’application de deux forces extéerieures P, et P; sont égaux

Pour démontrer cette égalite, considérons un systeme déformé possédant une
energie de déformation U,. Une nouvelle force P; appliquée au point 4, provoque
selon sa direction un déplacement o, de ce point et fournit I'énergie de déformation
U, au systeme

© Oy = a;P;

1 1 2
Uy =50k =5 a;Pj
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Chapitre 10 : Energie de déformation élastique

Démonstration : Egalité des coefficients d’influence réciproques

A partir de ce nouvel état du systeme, appliquons au point 4; une force P; qui
entraine un déplacement g, de ce point et un travail U

© 0 = ay;

Uj; = 5JJPJ = a]]

B

P2

Cette force provogue en outre un nouveau deplacement ¢, au point 4,
' 5ij = a;; Py

« Ujj=46;iP = a;jP;P;

L'énergie du systeme s’exprime (AU le travail des autres forces n # i, j )

- U=Uy+AU+= auP2+ —aj; P} + a;;P;P;
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Chapitre 10 : Energie de déformation élastique

Démonstration : Egalité des coefficients d’influence réciproques
Si I'on refait le méme developpement en appliquant P, puis P;, on trouve :

1 1
e U= UO + AU + Eaijjz + EaiiPl-z + ajipipj

AU ayant la méme signification et la méme valeur que précédemment, on a

a;j PP = a;i PP

Et donc, on trouve 'expression du théoreme de reciprocite de Betti-Rayleigh introduit
au début de ce chapitre

a;j = aji
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Chapitre 10 : Energie de déformation élastique
Enoncé : Théoréme de Castigliano

Enonce . Le déplacement o, d’'une force genéralisée P,, agissant sur un systeme
élastique et proportionnel, est égal a la dérivée partielle de I'énergie de déformation
du systeme par rapport a cette force

ou

5k=6_Pk

Le déplacement géneéraliseé o, est la composante dans la direction de la force
géneralisée P, (force ou moment) du déeplacement ou de la rotation provoqué par
I'’ensemble des forces généralisées appliquées au systeme.

L’énergie de déformation s’exprime (par la seconde formule de Clapeyron) :

1
: U_E 121 1“1]
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Chapitre 10 : Energie de déformation élastique
Démonstration : Théoreme de Castigliano

Isolons dans cette double somme les 2n—1 termes dependant de la force P,

- U =% 1alkP Pk + - Z 1ak]PkP + - akkPk + U’
l?'—'k ]#_—k

U’ denote la part de I'energie de déformation qui est indépendante de P,. En dérivant
cette expression par rapport a la force genéralisée P,

T Z -1 @i Py + 5 Z] 1akjp+akkpk
i#k j*k

En réintegrant le troisieme terme du membre droit de cette égalité dans les deux
sommes, on peut ecrire, grace a I'égalité des coefficients d'influence reciprogues (a,
= a;) et le lien entre le déplacement et les forces géneralisées

W 1an 1an _1
© opm = S him1 iP5 X o ar P = S Xy ani P+ Z, 1 kP 5k+ 5k—5k

0Py, 2
t o =a

g J
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Chapitre 10 : Energie de déformation élastique
Probleme 10.1

En negligeant l'influence de l'effort tranchant, determiner par le théoreme de
Castigliano le déplacement vertical 6 du point 4 d’une poutre encastrée (3d, coude
perpendiculaire) en forme de L de section circulaire, soumise a une force P en son
extremité libre
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Chapitre 10 : Energie de déformation élastique
Probleme 10.2

En ne tenant compte que de la flexion et en recourant au théoreme de Castigliano,
calculer pour la poutre encastree representée le déplacement vertical o, le
déplacement horizontal &, ainsi que la rotation « au point 4 ou s’applique une force
verticale P

34



Mécanique des structures

aU

6k=a—Pk

Chapitre 10 : Energie de déformation élastique

Dr. Alain Prenleloup
SGM BA3 2024-2025

cPr-L




Chapitre 10 : Energie de déformation élastique
Probleme 10.1

En negligeant l'influence de l'effort tranchant, determiner par le théoreme de
Castigliano le déplacement vertical 6 du point 4 d’une poutre encastrée (3d, coude
perpendiculaire) en forme de L de section circulaire, soumise a une force P en son
extremité libre
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Chapitre 10 : Energie de déformation élastique
Probleme 10.1
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Chapitre 10 : Energie de déformation élastique
Probleme 10.1
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Chapitre 10 : Energie de déformation élastique
Probleme 10.2

En ne tenant compte que de la flexion et en recourant au théoreme de Castigliano,
calculer pour la poutre encastree representée le déplacement vertical o, le
déplacement horizontal &, ainsi que la rotation « au point 4 ou s’applique une force
verticale P
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Chapitre 10 : Energie de déformation élastique
Probleme 10.2
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Chapitre 10 : Energie de déformation élastique
Probleme 10.2
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Chapitre 10 : Energie de déformation élastique
Probleme 10.2
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Chapitre 10 : Energie de déformation élastique
Probleme 10.2
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Chapitre 10 : Energie de déformation élastique

Probleme 5.2

Calculer la contrainte de cisaillement maximum dans un ressort hélicoidal de dia-
metre D, formé de n spires de diametre d et soumis a une charge de compression P.
Déterminer ensuite la fleche, la constante du ressort et I'énergie emmagasinée.
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Chapitre 10 : Energie de déformation élastique
Probleme 5.2
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Chapitre 10 : Energie de déformation élastique
Probleme 5.2
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Démonstration : Théoreme de Castigliano
Etapes justificatives

Premiere formule de Clapeyron

1 1
© U= P6; [, ada =% Pi6;

ay;

é‘ida

A

Y.

\
>y

Le déplacement généralise «d

— n

Seconde formule de Clapeyron

1on 1
* U=52i=1pi5i_5 121 1al]




Démonstration : Théoreme de Castigliano
Etapes justificatives
Théoreme de reciprocite de Betti-Rayleigh

© D=1 6P = Z}”:l/l]"Qj

Le théoreme de réciprocité de Betti-Rayleigh exprime I'égalité de deux energies et
peut s’énoncer sous la forme plus restreinte de I'égalité des coefficients d’influence

aij = 4j;



Démonstration : Théoreme de Castigliano
Etapes justificatives

Théoreme de Castigliano

¢ U__Z 121 1 @i Py

¢ Z 1alkPPk+ Z 1ak]PkP + - akkPk + U’
i#k ]:/—'k
¢ a_Pk Z 1alkP + - Z] 1ak]P +akkPk
U
BT Zn 1 @ik + 5 Zn 3y Zn 1 QkiPi + 5 Zn 1 ;P 6k + - 6k = O
. . , . 0
Ainsi on peut écrire > 5 = L

0Py,
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